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An approximate mathematical model, based on the equivalent gain principle for stochastic process 
dynamics, has been developed to analyse the behaviour of tank electrolysers not amenable to 
CSTER-modelling. 

Nomenclature 

ak, bk 
C 

Ce 
ci 

d(t) 
F 
f(x) 
f(m) 
I 
K 
k 

m 

p(x) 

q 

expansion coefficients 
electrolyte concentration in tank elec- 
trolyser t 
exit electrolyte concentration x(t) 
inlet electrolyte concentration 
distortion function (Equation 1) y(t) 
Faraday's constant z 
non-linear function of input x(t) ~1 
shorthand for function in Equation 20 e2 
electric current ~3 
equivalent gain (Equation 4) 0 .2 
linear coefficient; as subscript it denotes z 
a harmonic element, k 1 and k 2, lumped 
parameters (Equation 27) z a 
exponent (rational number) 
amplitude probability density of func- qS(jo)) 
tion x(t) 
volumetric flow rate of electrolyte ~(e)) 

r(t) 
s 2 

sgn (z) 

composite input 
sample variance (Table 2) 
positive sign for z > 0 and negative 
sign forz  < 0 
time 
input function; x 0 its magnitude (time- 
invariant) 
output function 
valency 
( c i -  c*)/q* 
1/zFq* 
I/q* 
variance of input x(t) 
mean residence time of tank elec- 
trolyser (z = V/q* at steady state) 
apparent time constant of tank elec- 
trolyser 
Fourier transform of impulse response 
of the tank electrolyser (Equation 16) 
power spectral density (Equation 16) 

1. Introduction 

In recent years much progress has been made in both development and applications of the CSTER 
(continuous-flow stirred-tank electrochemical reactor) model in electrochemical engineering (e.g. 
[1-3]), including a relatively new subject: CSTER process dynamics (e.g. [4]). One important 
limitation of CSTER-based modelling is the existence of non-uniform flow and concentration 
patterns in tank electrolysers without mechanical mixing, especially in the presence of membranes 
and separators. Unless the distribution of electrolyte flow has been carefully designed to approach 
uniformity, and if gas evolution which can also cause sharp local flow and concentration gradients 
is not excessive, the mathematical description of a tank electrolyser via a CSTER model may be 
severely inaccurate. 

One means of accounting for deviation from CSTER conditions would be the classical residence 
time distribution or exit age distribution approach, well documented in the chemical reaction 
engineering literature (e.g. [5, 6]), although it has not yet been shown if these techniques can be 
extended in a straightforward fashion to electrochemical reactors. At any rate, in the absence of 
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mechanically induced mixing, the estimation of the exit concentration-time relationship is by no 
means a trivial exercise. An alternative to the residence time distribution or exit age distribution 
approach to this problem is based on the concept of the equivalent gain in the theory of  stochastic 
process dynamics [7, 8], whose usefulness in the control of non-linear systems has been known for 
some time [9-11]. The purpose of this paper is to introduce the subject to electrochemical engineer- 
ing science and to discuss its potential for the analysis and design of  reaMife tank electrolysers. 

2. Theoretical background 

Let y(t) = f[x(t)] denote a non-linear relationship beween two time-variant functions x(t) and y(t); 
then, the mean square of the distortion between y(t) and its linear approximation kx(t), 

d(t) - y(t) - kx(t)  (1) 

may be written as 

ct2(t) = f+~ [f(x)  - kx]2p(x) dx  (2) 

where p(x) is the amplitude probability density (APD) of  x(t). The equivalent gain is the particular 
value of k which minimizes the mean square, i.e. 

Od2(t)/Ok = 0 a t k  = K (3) 

Applying Equation 2 to Equation 3 the relationship 

 f+2 K = -~ _ x f (x)p(x)  dx  (4a) 

0-2 _ f~-oo xZp(x) dx  (4b) 

is obtained. In particular, if the input x(t) has a Gaussian APD, Equation 4a reduces to the simpler 
form [9] 

1 f+~ df (-- X2/20 "2) dx (5) K - 0_(2=)1/2 _ ~xx exp 

where a2 is the variance of the Gaussian input x(t). The approach can be generalized to multiple 
inputs. If there are, for example, two inputs Xl (t) and x2 (t) with APD Pl (xl) and P2 (x2), respectively, 
the APD of the summed input r(t) = xl (t) + x2(t) is given by 

: f+_~ p2(r - x i ) p t ( x , ) d x ,  = f+~ p1(r - x~)p2(x2)dx2 (6) p(r) 

and the equivalent gain is defined by 

' f+2 
K = 0-~ + 0-I - rf(r)p(r) dr (7a) 

where 

0-~ =- f+~ x~p,(x,) dxi; i =  1,2 (7b) 

If  both inputs are Gaussian, Equation 7a may be rewritten as 

K = [2rt(a~ + 0-2~)] ~/z exp [-r2/Z(a~ + 0-2)] dr  (8) 

It follows that the minimum value of the mean square error in the case of an even probability 
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distribution is given by the simple relationship 

d2(t)mi, = 2 f o  f 2 ( x ) p ( x )  d x  - K20- 2 (9) 

The prime utility of the equivalent gain concept in non-linear control theory is a linear approxi- 
mation to a non-linear elementf(x),  used for the design of feedback control schemes; if f (x) and 
p ( x )  are known, the necessary computations are relatively straightforward. For the purposes of this 
paper, however, the reverse procedure is of interest, i.e. where an equivalent gain is estimated from 
input and output information. 

3. Application of the equivalent gain principle to the analysis of non-ideal tank electrolysers 

The overall mass balance in an isothermal tank electrolyser with through-flow may be written as 

dc I 
V d---t = qci - qce z F  (10) 

where the electrolyte concentration in the tank, c, not necessarily uniform, is a function of time. The 
familiar CSTER model is derived directly from Equation 10 if perfect mixing is assumed; then, 
c = Ce and time becomes the only independent variable. It is worth noting that if the flow rate is 
a process variable, Equation 10 cannot be solved analytically in general even if the CSTER 
assumption is valid, except in the case of a sudden jump (step perturbation) in q. In the case of an 
electrolyser operating under imperfect mixing conditions, no analytical solution of Equation 10 is 
attainable. 

In applying the equivalent gain approach in the simplest sense to this problem, Equation 10 is 
replaced by a non-linear function element ce = f ( q ) ,  assuming that flow rate is the only input and 
the exit electrolyte concentration is considered as the only output. Although not imperative, the use 
of perturbation (or deviation) variables x - q - q* and y = ce - c* related to steady-state 
conditions is preferable: then y = f ( x )  and the notation of the previous section immediately applies. 
Let the APD of the flow-rate perturbation be approximated by a Gaussian form with variance 0 -2. 
In the simplest case the input-output relationship is a symmetric power function 

f ( x )  = sgn(x) .  Ixl m (11) 

and the equivalent gain is obtained from Equation 5 (Appendix 1) as 

K -  (2rc)l/~ 

The power parameter, m, can be estimated via a successive approximation or a root-finding 
procedure if K and a have been determined from experimental power spectrum analysis of input and 
output data (Section 4). If the input-output relationship may be described by a polynomial of the 
form 

2 k + l  (13) f ( x )  = a2k+, x 
k = 0  

then in the case of a Gaussian input with variance 0 -2 (Appendix 2), 

K = ~ azk+l (1.3.5 . . .  2k + 1)a zk (14) 
k = 0  

is the final equivalent gain (Equation 5). The ai coefficients are obtained from a power spectrum 
analysis of the input using a sufficient set of variances (alternatively, the numerical values of a~ in 
Equation 13 might be known from an a priori theoretical analysis of the non-linear element). 
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4. Power spectrum analysis 

In the classical approach (e.g. [12, 13]) of spectrum analysis, if input x(t) has the power spectral 
density W~(CO) defined as 

if+ 2 x2(t) - ~ %(CO) dCO (15) 

then the power spectral density of the output y(t) of the electrolyser ~y(CO) is related to ~x(CO) by 
the relationship 

~,(~o) = K2l~b(jCO)12~x(CO) (16) 

The function ~,b(jCO) is the Fourier transform of the impulse response of the electrolyser (Appendix 
3). Equation 16 indicates the manner of estimating the equivalent gain from experimental power 
spectra, which can be obtained by a large variety of modern methods. Of these, real-time spectrum 
analysis [14-16], autoregressive spectrum analysis [17], the sums-of-delta-function approach [18], 
digital analysis [19], pulse-sequence analysis [20, 21] and Markov-signal analysis [22] are mentioned 
as representative examples. The discussion of spectrum analysis is beyond the scope of this paper; 
general papers of tutorial nature (e.g. [23, 24]) treat this subject in a comprehensive manner. 

5. Equivalent gain via harmonic analysis 

The equivalent gain may be determined by the reversal of a transformation method [25] proposed 
originally in the study of non-linear circuit components, if the f (x)  element is contained (e.g. by 
appropriate normalization) in the Ix[ ~< 1 domain. Let 0 - COot where COo is the frequency of a 
sinusoidal input, x = sin 0, applied to the non-linear element within a low frequency domain. 
Harmonic analysis of the output provides an empirical Fourier spectrum 

N 

f ( s in0 )  = ~ (c~ncosn0 + fl, sinnO) (17) 
n = 0  

Then, using the equivalence 

a 0  f (x)  = ~ ~ [anPn(x) + bnQn(x)] (18) 
n 

Pn(X) =- COS nO; Q,(x) =- sin nO 

f(x)  is established by computation and K is obtained in the usual manner. Since the APD of the 
sinusoidal function x = sin 0 is p(x) = 1/~(1 - x2) ~/z, Equation 4a may be written as 

2 f + : d  ~ x2) '/2 K = - (1 - dx (19) 
7~ - 

since o .2 = 0.5 in this case. 

6. Illustrative example 

Assume that a tank electrolyser with steady-state operating conditions given in Table 1 is subjected 
to a stationary random perturbation sequence in the electrolyte flow rate as shown in Table 2 
(the numerical values would be obtained by periodic sampling of flow rate via an appropriate 
instrument-microprocessor assembly). The mean value is very small, hence 2 = 0 is taken for the 
sake of simplicity and in view of the large sample size, s 2 -~ o .2 may be assumed. A goodness-of-fit 
test [26] is performed to test the hypothesis that the sample represents the Gaussian distribution 
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Table 1. Steady-state operating conditions for the tank elec- 
trolyser of the illustrative example 

Inlet flow rate 
Inlet electrolyte concentration 
Active tank volume 
Electric current 
Valency of active ions 
Outlet electrolyte concentration 

q* = 3.412 lmin -l  
e i = 0.04moll -I 
V = 2001 
I = 50A 
z = 2  
c* = 0.0354moll -l  

[0; 0.7028]; the c o m p u t e d  ch i - squa re  stat ist ic,  )~2 _~ 2.6, is smal le r  t h a n  the  cr i t ical  va lue  o f  3.84 a t  
a 9 5 %  level o f  conf idence ,  hence  the  hypo thes i s  is n o t  rejected.  The  d a t a  pe rmi t ,  therefore ,  the 
e s t i m a t i o n  o f  K via  E q u a t i o n  12: 

K = 0 .7028re - ' f  (m) (20) 

w h e r e f ( m )  - m/(2rc)l/22m/2F{m/2}; selected va lues  o f f ( m )  are  g iven  in  T a b l e  3. 
A s s u m e  tha t  a (qu ick ly  pe r fo rmed)  p o w e r  s p e c t r u m  ana lys i s  o f  the  i n p u t - o u t p u t  d a t a  yields a n  

i naccu ra t e  va lue  o f  K = 1.0073 (the effect o f  this i n a c c u r a c y  is s h o w n  in  Fig.  1). E q u a t i o n  20 is 
solved for  m = 0.7 a n d  the  a p p r o x i m a t e  ou t le t  c o n c e n t r a t i o n - f l o w  ra te  r e l a t i onsh ip  m a y  be wr i t t en  

as 

f ( q  - q*) = sgn (q - q * ) ' l q  - q*l ~  3 (21) 

In  a m o r e  ref ined ap p ro ach ,  several  r a n d o m  p e r t u r b a t i o n  sequences  wi th  n u m e r i c a l l y  different  
va r i ances  cou ld  be cons idered .  A s s u m e  tha t  a careful ly  p e r f o r m e d  spectra l  ana lys i s  o f  i n p u t - o u t p u t  
d a t a  o b t a i n e d  in  a ce r ta in  set o f  m e a s u r e m e n t s  yields the resul ts  s h o w n  in  T a b l e  4. Th i s  i n f o r m a t i o n  

pe rmi t s  ana lys i s  in  t e rms  o f  E q u a t i o n s  13 a n d  14 wi th  a low n u m e r i c a l  va lue  o f  n. Se t t ing  n = 1, 
the coefficients in  the a p p r o p r i a t e  f o r m  o f  E q u a t i o n  14, i.e. K = al + 3a3a 2, are o b t a i n e d  via 
regress ion  as a~ = 1.154 a n d  a 3 = 1.273. T h e  ou t le t  c o n c e n t r a t i o n - f l o w  ra te  r e l a t i onsh ip  is g iven  

as 
f ( q  - q*) = 1.157(q - q*) + 1.272(q - q * ) 3 m o l m  -3 (22) 

A s s u m e  f inal ly  tha t  h a r m o n i c  ana lys i s  o f  the o u t p u t  c o n c e n t r a t i o n  f r o m  the  t a n k  e lect rolyser  

subjec ted  to l ow- f r eq u en cy  s inuso ida l  p e r t u r b a t i o n s  in  the e lectrolyte  flow ra te  yields the F o u r i e r  

spec t rum ( E q u a t i o n  17) 

y( t )  ~ 2.1587 sin 0 - 0.3256 sin 30 + 5.625 x 10 -3 s in 50 m o l m  -3 (23) 

E q u a t i o n  23 impl ies  the e q u i v a l e n t  fo rms  

f ( x )  = A x  + B x  3 --~ C x  5 (24a) 

= b , Q , ( x )  + b3Q3(x) + bsQs(x )  (24b) 

= b l x  + b3(3x - 4x  3) + bs(5x  - 20x 3 + 16x s) (24c) 

Table 2. Stationary random perturbation sequence in inlet flow rate: x =- q - q* (lmin -1) 

- 1.2t2 0.688 0.088 1.088 -- 0.212 0.288 - 0.412 - 0.812 
-0.012 -- 1.812 --0.312 --0.112 0.388 --0.312 1.288 0.288 
- 0.912 0.888 -- 0.012 0.188 -- 0.512 -- 0.112 0.488 - 0.312 
- 0.112 -- 0.312 0.288 0.988 -- 0.212 0.688 - 1.512 - 0.012 

1.288 0.388 - 0.212 -- 0.812 0.488 - 0.412 0.788 0.088 

Mean:2 = 5 x 10 4. 
Standard deviation: s = 0.7028. 
Chi-square of goodness of fit test: )~ ~ 2.6. 
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Table3. Numerical values of the function f ( m ) = -  
m/ (2~z)l/2 2"/2F (m/2) at selected values of the independent 
variable, m 

m f ( m )  

0.1 0.80415 
0.2 0.81360 
0.5 0.86012 
0.7 0.90620 
1.0 0.99975 
1.2 1.08046 
1.5 1.23280 

via Equa t ion  18 and by use of  classical t r igonometr ic  relat ionships between mult iple angles. Since 
bl = 2.1587, b 2 = - 0 . 3 2 5 6  and b3 = 0.005625, the numerical  values of  A = 1.21, B = 1.19 and 
C = 0.09 are computed .  Hence,  ha rmonic  analysis yields the outlet  concent ra t ion- f low rate 
relat ionship 

f ( q  - q*) = 1.21(q - q*) + 1.9(q - q,)3 + 0.09(q - q,)5 (25) 

Iq - q*l ~< l m o l m  -3 

The  plots o f  Equat ions  21, 22 and 25, shown in Fig. l, indicate little divergence between the 
polynomial  forms,  but  a relatively large deviat ion f rom the single-power fo rm (Equat ion  21), as 
expected. 

A minor  refinement of  the analysis can be achieved if the independent  variable is defined as a 
fract ion of  the steady-state flow rate, in terms o f  the per turba t ion  variable: s = (q - q*)/q*. I f  this 
opt ion is taken,  the equivalent  gain analysis yields the relat ionships 

f(q-q*),rno[ rn -3 

I 
0 . 8  rn 

.,/,/T 

.~//,//" 
~ Z Y  

/ /  

I ~ I ~ 1 t " ~ 1 "  i i I I [ 
-0.6 -0.4 -0.2 / I  0.2 0 .4  0.6 

/ / F  cq-r , mi~ 

~ /  F - o 2  

///f, z I 
S - 0.4 

~/:" ~ - - ' - -  I EQ. 21 
/ "  I __ - . . . .  = EQ. z z  

T < / "  p-o  - -  

Fig. 1. Exit concentration-inflow rate relationships in the 
numerical illustration. 
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Table4. Equivalent gain values obtained from the spectral 
analys~ofrandornsequences 

Variance (a 2) Equivalent ga& (K) 

0.685 2.9478 
0.692 2.9826 
0.713 3.0939 
0.721 3.1419 

Single power form: 

Cubic polynomial form 
(random Gaussian input): 

f ( 2 )  = 2.361 sgn 2-1210.7 (26) 

f ( 2 )  = 3.948x + 50.52623 (27) 

Cubic polynomial form 
(harmonic analysis): 

f ( 2 )  = 4.1282 + 75.47123 + 41.619x 5 (28) 

Similarly, a fractional exit concentration variable, y - (c3 - c*)/c*, can be defined and the entire 
analysis can be carried out in terms of  dimensionless variables. 

7. Comparison with CSTER behaviour 

If the CSTER model and small perturbation theory can be applied to a tank electrolyser the overall 
mass balance (Equation 10) may be rewritten in terms of perturbation variables as 

dy 
r-d-}- + y = ~lx 1 - -  ~ Z 2 X  2 - -  O~3xlY (29) 

where cq, e2 and ~3 are lumped parameters, z = V/q* is the residence time for the tank, Xl is the 
perturbation in flow rate and x2 the perturbation in current. The non-linear term in Equation 29 
indicates that analytical solutions are feasible only for step perturbations (i.e. Xl = constant) in the 
flow rate�9 In the simple case of no current perturbation (x2 = 0), the variation of  exit concentration 
with time is given by 

Ce(t) = C* + kl[1 -- exp ( - k 2 t ) ]  (30) 

~ x  0 I -]- ~3x0 
kl = 1 + cq(x0)' k2 -= z 

where x0 -= (q0 - q*), the magnitude of the flow-rate step, determines both the new steady state 
and the speed of response of  the exit concentration to the step perturbation. Hence, the CSTER 
response is asymmetric in this case. If there is a simultaneous step perturbation in the current, then 
kl = [ c q x 0 -  a 2 ( I o -  /*)]/[1 + e3x0] and k 2 is unchanged. Numerical solutions only can be 
effected if perturbations in the flow rate are of  a more complicated nature. 

The advantage of the equivalent gain analysis is essentially in the linearization of the f ( x )  
relationship, allowing a straightforward computation of y(t). Since a stirred-tank electrolyser is a 
first order system (as seen in Equation 10), the approach expresses the variation of the exit 
concentration with time as a combination of  the equivalent gain, which depends on the magnitude 
of the perturbation in flow rate, and the familiar exponential rise in time. The response of the tank 
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electrolyser may therefore be written as 

co(t) = c* + K(xo)" xo[1 - exp ( - t / ~ ) ]  (31) 

where z, is the apparent time constant of the tank, determined from experimental step response or 
frequency response tests. At very large times, the new steady state 

c* + k~ (CSTER) 

c* + K(xo)" xo 
lira ce(t) = (equivalent gain approach Nonideal tank electrolyser (32) 
t ~ o o  

c* + f ( q -  q*) 
(rigorous) 

upon perturbation can be estimated without the knowledge of z,. In consequence, the plots in Fig. 1 
may be interpreted as large-time step responses of the tank electrolyser. 

8. Discussion and critique of the equivalent gain technique 

The equivalent gain approach has two major advantages over approaches (e.g. describing function) 
based on deterministic oscillatory inputs. Firstly, the required analysis can be carried out with 
on-line perturbations occurring in an electrolytic plant, without having to interrupt normal plant 
operations. Secondly, it is more general than deterministic linearization techniques and, indeed, it 
can be easily adapted to sinusoidal input perturbations, for example, as shown in the previous 
sections. The technique requires a modicum of mathematical manipulations which can be normally 
carried out on pocket or desk-top devices. On the other hand, adequate instrumentation is necessary 
for the acquisition of reliable data and for the performing of spectrum analysis. 

Certain structurally inherent limitations warrant caution in the case of random inputs. Firstly, 
their statistical properties should be time-independent; if the perturbation is non-stationary the 
APD function cannot be reliably constructed. The second problem lies in the fact that the APD 
cannot furnish information about the probability of temporal transitions from one amplitude to 
another amplitude [9]. Finally, the nature of the non-linearity, f ( x ) ,  determines the degree of 
distortion of the APD of the input perturbation; in principle, the output y = f ( x )  does not have the 
same APD as x(t). This problem is not important if the system behaves as a 'low-pass filter', i.e. if 
there is a strong attenuation of the system characteristics ~b (jco) outside a narrow frequency range. 
In a feedback configuration, i.e. when a process is controlled by means of a feedback control loop, 
the low-pass filtering effect is more pronounced than in an open-loop configuration and the 
distortion problem can easily be minimized. In summary, to maximize the reliability of the equi- 
valent gain approach it should be applied in the case of non-stationary random perturbations with 
modest variations in the input amplitude. 

Dual perturbations can be readily handled via the equivalent gain concept as mentioned in 
Section 2. If p~(xl) and P2(X2) represent the APD of perturbations in the flow rate and in the 
electric current, respectively, then Equation 6 is the joint APD of the two input perturbations and 
Equation 7 is the equivalent gain of the tank electrolyser. Thef(r) relationship is the mathematical 
representation of the response of exit electrolyte concentration to simultaneous perturbations in 
flow rate and electric current. If both perturbations are Gaussian, the equivalent gain is given by 
Equation 8; as in the single input case the analysis can be carried out under on-line plant conditions 
without interrupting normal operations. A similar analysis can be applied to other perturbation 
pairs, e.g. to simultaneous perturbations in flow rate and inlet concentration. 

In conclusion, the equivalent gain technique is one viable means of accounting for non-ideal 
behaviour of real-life tank electrolysers where the CSTER model may yield unsatisfactory results. 
Although the technique is well known in non-linear control theory it is a new concept in electrolytic 
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reaction engineering and the extent of its potential remains to be established. This paper provides 
a framework for its eventual utilization in this context. 
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Appendix 1. The derivation of  Equation 12 

Substituting Equation 11 into Equation 5, the relationship 

~+~ 2m fx (~ - "exp  ( -  x2/2, 2) dx (A.1) m 
K = a(2-~)1/2 lxr ' - '  exp (--x2/20 -2) dx - a(2~),/2 

is obtained. Using the integral expression [27] 

[o  exp ( - q x n ) x  "v ' d x  = F(p) (A.2) 
nq p 

where n is integer; p and q are fractions, Equation 12 is obtained on the necessary algebraic 
simplifications. By comparison n = 2, q = 1/2a 2 and p = m/2, Numerical values of the gamma 
function defined as 

tco 
f (x)  -= J0 tx ' exp  ( - t )  dt (A.3) 

are readily available in handbooks (e.g. [28]). 

Appendix 2. The derivation of  Equation 14 

As outlined by West [9], the substitution of Equation 13 into Equation 4a yields two integral 
expressions: 

1 f+~ ~ a2~x 2k exp ( -x~/2o  -2) d(x 2) 
K -  20.3(2~)1/2 g~o 

1 
f+~ k a2k+, x2k+2 exp (--x2/2a 2) dx  (A.4) 

+ a3(2~) I/2 - k=0 

of  which the first one is zero. Thus, the equivalent gain is given by 

2 , 
K - a3(2~),/2 j0oo 2 a2~+1 x2~+2 exp ( -  x2/2a 2) dx  (1.5) 

k=O  

Considering the general integral term 

2 x2k+2 fo  a2k+l exp (--x2/2o -2) dx 
0-3 ( 2 ~ )  l/2 

and taking into account the relationship [27] 

; o x 2 , , e x p ( _ s x 2 )  dx = 1 . 3 . 5 . . . ( 2 n +  1 ) ( ~ )  1/2 
:5~7~s~ ; s > 0 (A.6) 

and using equivalences n = k + 1 and s = 1/2a 2, the general integral term is simplified to 

2 1.3,5 . . .  (2k + 1)2k+lo-2k+20"(27C) I/2 
= 1 , 3 . 5 . . .  (2k + l )a  2~ 3 ",1/2 a (2tO' 2/~+2 
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hence 

which is Equa t ion  14. 

K = ~ a2k+l(1.3.5 . . .  2k + l)ff 2k 
k = 0  

Appendix 3. A short derivation of Equation 16 

Cons ider  a l inear  system with a s teady-s ta te  f requency response  KqS(jco) and  power  spectral  densi ty  
Ox(o)) for  its input  funct ion x( t ) .  Then,  the average input  power  into the system m a y  be wri t ten  as 

1 + 
x(t)2 = 2-~ f - ~  ~x(m) de) (A.7) 

The average ou tpu t  power  o f  the system is given by the s imilar  re la t ionship  

1 f+~  1 f+oo y(t)2 = 2~ - 4'y(co) den = 27~ :-oo ~'x(co)[KqS(j~o)[ 2 d o  

by apply ing  the superpos i t ion  theorem (or convo lu t ion  theorem)  o f  F o u r i e r  t rans forms  to the 
i n p u t - o u t p u t  re la t ionship.  Thus  

~ly((3)) : ~bx(C.o)lK4~(jco)l 2 = K2l(o(j~)lZ~bx(~) 

which is Equa t ion  16. A deta i led de r iva t ion  m a y  be found in Sections 3.8 and  3.9 o f  [9]. 
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